Dual role of myosin II during Drosophila imaginal disc metamorphosis

نویسندگان

  • Silvia Aldaz
  • Luis M. Escudero
  • Matthew Freeman
چکیده

The motor protein non-muscle myosin II is a major driver of the movements that sculpt three-dimensional organs from two-dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90°. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis.

We report that Drosophila unconventional myosin VI, encoded by Myosin heavy chain at 95F (Mhc95F), is required for both imaginal disc and egg chamber morphogenesis. During oogenesis, Mhc95F is expressed in migrating follicle cells, including the border cells, which migrate between the nurse cells to lie at the anterior of the oocyte; the columnar cells that migrate over the oocyte; the centripe...

متن کامل

Ance, a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxyecdysone.

Ance is a single domain homologue of mammalian angiotensin-converting enzyme (ACE) and is important for normal development and reproduction in Drosophila melanogaster. Mammalian ACE is responsible for the synthesis of angiotensin II and the inactivation of bradykinin and N -acetyl-Ser-Asp-Lys-Pro, but the absence of similar peptide hormones in insects suggests novel functions for Ance. We now p...

متن کامل

How functions in leg development during Drosophila metamorphosis.

The Drosophila how gene encodes a KH RNA binding protein with strong similarity to GLD-1 from nematodes and QK1 from mice. Here, we investigate the function of how during metamorphosis. We show that how RNA and protein are present in a variety of tissues, and phenotypic analyses of how mutants reveal multiple lethal phases and defects during metamorphosis. In addition to previously reported abn...

متن کامل

Retinoids Regulate a Developmental Checkpoint for Tissue Regeneration in Drosophila

Damage to Drosophila imaginal discs elicits a robust regenerative response from the surviving tissue [1-4]. However, as in other organisms, developmental progression and differentiation can restrict the regenerative capacity of Drosophila tissues. Experiments in Drosophila and other holometabolous insects have demonstrated that either damage to imaginal tissues [5, 6] or transplantation of a da...

متن کامل

The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis.

In Drosophila, the Jun-N-terminal Kinase-(JNK) signaling pathway is required for epithelial cell shape changes during dorsal closure of the embryo. In the absence of JNK pathway activity, as in the DJNKK/hemipterous (hep) mutant, the dorsolateral ectodermal cells fail both to elongate and move toward the dorsal midline, leading to dorsally open embryos. We show here that hep and the JNK pathway...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013